Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.17.536908

ABSTRACT

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal IgA response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal sIgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies targeting the receptor-binding domain of the spike protein (01A05, rmAb23, DXP-604 and XG014). Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2 and BA.4/5 with a 50-150-fold increase in potency, reaching the level of the most potent monoclonal antibodies described till date. In hACE2 transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Conversion of IgA and dimerization further enhanced or restored the neutralizing ability against the emerging Omicron sub-variants (DXP-604 for BQ.1, BQ.1.1 and BA2.75; 01A05 for BA2.75, BA.2.75.2 and XBB.1). Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by subvariants and, potentially, future VOCs.


Subject(s)
Breakthrough Pain
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.03.499114

ABSTRACT

SARS-CoV-2 Omicron sublineages have escaped most RBD-targeting therapeutic neutralizing antibodies (NAbs), which proves the previous NAb drug screening strategies deficient against the fast-evolving SARS-CoV-2. Better broad NAb drug candidate selection methods are needed. Here, we describe a rational approach for identifying RBD-targeting broad SARS-CoV-2 NAb cocktails. Based on high-throughput epitope determination, we propose that broad NAb drugs should target non-immunodominant RBD epitopes to avoid herd immunity-directed escape mutations. Also, their interacting antigen residues should focus on sarbecovirus conserved sites and associate with critical viral functions, making the antibody-escaping mutations less likely to appear. Following the criteria, a featured non-competing antibody cocktail, SA55+SA58, is identified from a large collection of broad sarbecovirus NAbs isolated from SARS convalescents. SA55+SA58 potently neutralizes ACE2-utilizing sarbecoviruses, including circulating Omicron variants, and could serve as broad SARS-CoV-2 prophylactics to offer long-term protection. Our screening strategy can also be further applied to identify broad-spectrum NAb drugs against other fast-evolving viruses.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.24.474084

ABSTRACT

Omicron, the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising unprecedented concerns about the effectiveness of antibody therapies and vaccines. We examined whether sera from individuals who received two or three doses of inactivated vaccine, could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2/60) and 95% (57/60) for 2- and 3-dose vaccinees, respectively. For three-dose recipients, the geometric mean neutralization antibody titer (GMT) of Omicron was 15, 16.5-fold lower than that of the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in 3-dose vaccinees, half of which recognize the receptor binding domain (RBD) and show that a subset of them (24/163) neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron, potently. Therapeutic treatments with representative broadly neutralizing mAbs individually or antibody cocktails were highly protective against SARS-CoV-2 Beta infection in mice. Atomic structures of the Omicron S in complex with three types of all five VOC-reactive antibodies defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to one major class of antibodies bound at the right shoulder of RBD through altering local conformation at the binding interface. Our results rationalize the use of 3-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are a rational target for a universal sarbecovirus vaccine. One sentence summary A sub-set of antibodies derived from memory B cells of volunteers vaccinated with 3 doses of an inactivated SARS-CoV-2 vaccine work individually as well as synergistically to keep variants, including Omicron, at bay.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.23.456471

ABSTRACT

The COVID-19 pandemic and the SARS-CoV-2 with its variants have posed unprecedented challenges worldwide. Existing vaccines have limited effectiveness against the SARS-CoV-2 variants. Therefore, novel vaccines to match current mutated viral lineages with long-term protective immunity are urgently in demand. In the current study, we for the first time designed a recombinant Adeno-Associated Virus 5 (rAAV5)-based vaccine named as rAAV-COVID-19 vaccine (Covacinplus) by using RBD-plus of spike protein with both the single-stranded and the self-complementary AAV5 delivering vectors (ssAAV5 and scAAAV5), which provides excellent protection from SARS-CoV-2 infection. A single dose vaccination induced the strong immune response against SARS-CoV-2. The induced neutralizing antibodies (NAs) titers were maintained at a high peak level of over 1:1024 even after more than one year of injection and accompanied with functional T-cells responses in mice. Importantly, both ssAAV- and scAAV-based RBD-plus vaccines exhibited high levels of serum NAs against current circulating variants including variants Alpha, Beta, Gamma and Delta. SARS-CoV-2 virus challenge test showed that ssAAV5-RBD-plus vaccine protected both young and old age mice from SARS-CoV-2 infection in the upper and the lower respiratory tracts. Moreover, whole genome sequencing demonstrated that AAV vector DNA sequences were not found in the genome of the vaccinated mice after one year vaccination, demonstrating excellent safety of the vaccine. Taken together, this study suggests that rAAV5-based vaccine is powerful against SARS-CoV-2 and its variants with long-term protective immunity and excellent safety, which has great potential for development into prophylactic vaccination in human to end this global pandemic.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.13.456164

ABSTRACT

COVID-19 caused by SARS-CoV-2 has been spreading worldwide. To date, several vaccine candidates moved into EUA or CA applications. Although DNA vaccine is on phase III clinical trial, it is a promised technology platform with many advantages. Here, we showed that the pGX9501 DNA vaccine encoded the spike full-length protein-induced strong humoral and cellular immune responses in mice with higher neutralizing antibodies, blocking the hACE2-RBD binding against live virus infection in vitro. Importantly, higher levels of IFN-{gamma} expression in CD8+ and CD4+ T cell and specific cytotoxic lymphocyte (CTL) killings effect were also observed in the pGX9501-immunized group. It provided subsequent protection against virus challenges in the hACE2 transgenic mouse model. Overall, pGX9501 was a promising DNA vaccine candidate against COVID-19, inducing strong humoral immunity and cellular immunity that contributed to the vaccines protective effects.


Subject(s)
Tumor Virus Infections , COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-437876.v1

ABSTRACT

The SARS-CoV-2 has led to a worldwide health crisis. The ACE2 has been identified as the entry receptor in a species-specific manner. Classic laboratory mice were insusceptible since the virus cannot use murine ACE2 orthologue. Animal models rely on gene modification on the virus or the host. However, these mice were restricted in limited genetic backgrounds and did not support natural infection. Here we showed two wild-type inbred lines (CAST and FEW) from Genetic Diversity mice supported authentic SARS-CoV-2 infection, and developed mild to moderate interstitial pneumonia, along with infiltrating inflammatory cells. Particularly, FEW featured age-dependent damages, while CAST charactered by pulmonary fibrosis. Genome and transcriptome comparative analysis suggested the mutated ACE2 was not responsible for SARS-CoV-2 infection in CAST and FEW, and the differential gene expressions in immune response and immune cell may be risk factors for the infection. In summary, the GD mice, derived from the multi-parental panel, provided promising murine models for exploring sophisticated pathogenesis in SARS-CoV-2.


Subject(s)
COVID-19
7.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3684723

ABSTRACT

The SARS-CoV-2 pandemic poses an unprecedented public health crisis. Accumulating evidences suggest that SARS-CoV-2 infection causes dysregulation of immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced by SARS-CoV-2 in animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could reduce inflammatory response and rescue the pneumonia with substantial reduction of viral titers in SASR-CoV-2 infected animals. Remarkably, Paquinimod treatment resulted in 100% survival of mice in a lethal model of mouse coronavirus (MHV) infection. A novel group of neutrophils that contributed to the uncontrolled inflammation and onset of COVID-19 were dramatically induced by coronavirus infections. Paquinimod treatment could reduce these neutrophils and regain antiviral responses, unveiling key roles of S100A8/A9 and noncanonical neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.Funding: This work was supported by the National Natural Science Foundation of China (31570891; 31872736), the National Key Research and Development Program of China (2016YFA0500302; 2020YFA0707800), the National Key Research and Development Program (2020YFA0707500) and the Strategic Priority Research Program (XDB29010000). Xiangxi Wang was supported by Ten Thousand Talent Program and the NSFS Innovative Research Group (81921005). We thank National Mega projects of China for Major Infectious Diseases (2017ZX10304402), CAMS initiative for Innovative Medicine of China (2016-12M-2-006) and The National Natural Science Foundation of China (82041008) for the support on the animal model study. Conflict of Interest: The authors have no conflicts of interest to declare.Ethical Approval: All experiments with live SARS-CoV-2 viruses were carried out in the enhanced biosafety level 3 (P3+) facilities in the Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) approved by the National Health Commission of the People’s Republic of China. All animals care and use were in accordance with the Guide for the Care and Use of Laboratory Animals of the Chinese Association for Laboratory Animal Science. All procedures of animal handling were approved by the Animal Care Committee of Peking University Health Science Center.


Subject(s)
COVID-19 , Pneumonia , Communicable Diseases
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.288704

ABSTRACT

The SARS-CoV-2 pandemic poses an unprecedented public health crisis. Accumulating evidences suggest that SARS-CoV-2 infection causes dysregulation of immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced by SARS-CoV-2 in animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could reduce inflammatory response and rescue the pneumonia with substantial reduction of viral titers in SASR-CoV-2 infected animals. Remarkably, Paquinimod treatment resulted in 100% survival of mice in a lethal model of mouse coronavirus (MHV) infection. A novel group of neutrophils that contributed to the uncontrolled inflammation and onset of COVID-19 were dramatically induced by coronavirus infections. Paquinimod treatment could reduce these neutrophils and regain antiviral responses, unveiling key roles of S100A8/A9 and noncanonical neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.


Subject(s)
Coronavirus Infections , Infections , Pneumonia , COVID-19 , Inflammation
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.17.046375

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has brought about an unprecedented crisis, taking a heavy toll on human health, lives as well as the global economy. There are no SARS-CoV-2-specific treatments or vaccines available due to the novelty of this virus. Hence, rapid development of effective vaccines against SARS-CoV-2 is urgently needed. Here we developed a pilot-scale production of a purified inactivated SARS-CoV-2 virus vaccine candidate (PiCoVacc), which induced SARS-CoV-2-specific neutralizing antibodies in mice, rats and non-human primates. These antibodies potently neutralized 10 representative SARS-CoV-2 strains, indicative of a possible broader neutralizing ability against SARS-CoV-2 strains circulating worldwide. Immunization with two different doses (3g or 6 g per dose) provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without any antibody-dependent enhancement of infection. Systematic evaluation of PiCoVacc via monitoring clinical signs, hematological and biochemical index, and histophathological analysis in macaques suggests that it is safe. These data support the rapid clinical development of SARS-CoV-2 vaccines for humans. One Sentence SummaryA purified inactivated SARS-CoV-2 virus vaccine candidate (PiCoVacc) confers complete protection in non-human primates against SARS-CoV-2 strains circulating worldwide by eliciting potent humoral responses devoid of immunopathology


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.13.990226

ABSTRACT

A global pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is ongoing spread. It remains unclear whether the convalescing patients have a risk of reinfection. Rhesus macaques were rechallenged with SARS-CoV-2 during an early recovery phase from initial infection characterized by weight loss, interstitial pneumonia and systemic viral dissemination mainly in respiratory and gastrointestinal tracts. The monkeys rechallenged with the identical SARS-CoV-2 strain have failed to produce detectable viral dissemination, clinical manifestations and histopathological changes. A notably enhanced neutralizing antibody response might contribute the protection of rhesus macaques from the reinfection by SARS-CoV-2. Our results indicated that primary SARS-CoV-2 infection protects from subsequent reinfection. One Sentence SummaryNeutralizing antibodies against SARS-CoV-2 might protect rhesus macaques which have undergone an initial infection from reinfection during early recovery days.


Subject(s)
Lung Diseases, Interstitial , Virus Diseases , Weight Loss , COVID-19 , Respiratory Insufficiency
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.13.990036

ABSTRACT

The outbreak of Corona Virus Disease 2019 caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) is highly transmitted. The potential extra-respiratory transmission routes remain uncertain. Five rhesus macaques were inoculated with 1x106 TCID50 of SARS-CoV-2 via conjunctival (CJ), intratracheal (IT), and intragastric (IG) routes, respectively. Remarkably, the CJ inoculated-macaques developed mild interstitial pneumonia and viral load was detectable in the conjunctival swabs at 1 days post-inoculation (dpi). Only via IT inoculation, viral load was detected in the anal swab at 1-7 dpi and macaque showed weight loss. However, viral load was undetectable after IG inoculation. Comparatively, viral load was higher in the nasolacrimal system but lesions of lung were relatively mild and local via CJ inoculation compared with that via IT inoculation, demonstrating distinct characteristics of virus dispersion. Both the two routes affected the alimentary tract. Therefore the clinicians need to protect eye while working with patients.


Subject(s)
Weight Loss , Virus Diseases , Severe Acute Respiratory Syndrome , Lung Diseases, Interstitial
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.09.983247

ABSTRACT

The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be confirmed. Therefore, we herein used a SARS-CoV-2 spike (S) protein-mediated cell-cell fusion assay and found that SARS-CoV-2 showed plasma membrane fusion capacity superior to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with HR2 domain. We previously developed a pan-coronavirus fusion inhibitor, EK1, which targeted HR1 domain and could inhibit infection by divergent human coronaviruses tested, including SARS-CoV and MERS-CoV. We then generated a series of lipopeptides and found that the EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than that of EK1 peptide, respectively. EK1C4 was also highly effective against membrane fusion and infection of other human coronavirus pseudoviruses tested, including SARS-CoV and MERS-CoV, as well as SARSr-CoVs, potently inhibiting replication of 4 live human coronaviruses, including SARS-CoV-2. Intranasal application of EK1C4 before or after challenge with HCoV-OC43 protected mice from infection, suggesting that EK1C4 could be used for prevention and treatment of infection by currently circulating SARS-CoV-2 and emerging SARSr-CoVs.


Subject(s)
Coronavirus Infections , Infections , Severe Acute Respiratory Syndrome , Virus Diseases , COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.17.951939

ABSTRACT

A recombinant adenovirus vaccine against the SARS Coronavirus (SARS-CoV) was constructed, which contains fragments from the S, N, and Orf8 genes. Rhesus Macaques immunized with the recombinant adenovirus generated antigen-specific humoral and cellular response. Furthermore, the vaccine provided significant protection against subsequent live SARS-CoV challenge. In contrast, three out of four monkeys immunized with placebo suffered severe alveolar damage and pulmonary destruction.


Subject(s)
Coronavirus Infections , Adenocarcinoma, Bronchiolo-Alveolar
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.07.939389

ABSTRACT

Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the Corona Virus Disease 2019 (COVID-19) cases in China has become a public health emergency of international concern (PHEIC). Based on angiotensin converting enzyme 2 (ACE2) as cell entry receptor of SARS-CoV, we used the hACE2 transgenic mice infected with SARS-CoV-2 to study the pathogenicity of the virus. Weight loss and virus replication in lung were observed in hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of significant lymphocytes and monocytes in alveolar interstitium, and accumulation of macrophages in alveolar cavities. Viral antigens were observed in the bronchial epithelial cells, alveolar macrophages and alveolar epithelia. The phenomenon was not found in wild type mice with SARS-CoV-2 infection. The pathogenicity of SARS-CoV-2 in hACE2 mice was clarified and the Kochs postulates were fulfilled as well, and the mouse model may facilitate the development of therapeutics and vaccines against SARS-CoV-2.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases, Interstitial , Severe Acute Respiratory Syndrome , COVID-19 , Virus Diseases , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL